

Point-of-use Water Disinfection by Means of UVC LED's

2nd "Berlin WideBaSe" Conference on Technology and Applications of Nitride Semiconductors

Walter Wipprich

19th of September 2013, Berlin

Clean water supply remains a challenge for humankind

More than 20% of the world population does not have access to clean and safe drinking water*

Approximately 4000 people die every day due to biologically contaminated (germ infested) water*

*Source: World Healthy Organization (WHO)

1	PURION – your partner within UV	-technology
	. Start your paraner manner	

- 2 UV-disinfection by means of traditional UV-lamps
- 3 UV-disinfection by means of UVC-LED

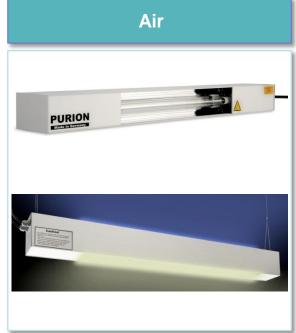
The company PURION® GmbH develops and manufactures UV systems for the disinfection of water, air and surfaces

Summary: Company data

General Data

- Beginning of the business activity: 2006
- Certified according DIN EN ISO 9001 : 2008
- All systems are developed and produced at the location of the company PURION[®] in Thuringia.
- Projects in Germany, Austria, Spain, Thailand, Brazil, Haiti, Switzerland, Portugal, Denmark,...

Products


- Disinfection plants for water, air und surface disinfection based on UV-technology
- Specialized on small plants for decentralized use (e.g. UVsystems with a power 300-1000 l/h)
- Actually as radiation source low pressure mercury lamps are used mainly

Research

- Research on future UV-technologies (in cooperation with German universities)
- Member of the "Advanced UV for life" group: joint development of UVC-LED "point of use" systems within the program "twenty20 – Partnership for innovation" (funded by BMBF)

Example: PURION products – for more information visit our website: www.purion.de

PURION

- Drinking water
- Pools
- Fish ponds
- Storm water of sewage plants
- Pharmacy
- Water of air conditioning
- Disinfection of permeate
- Aquariums

- Breweries
- Dairies
- Bakery
- Packaging industry
- Breeding farms

- 1 PURION your partner within UV-technology
- 2 UV-disinfection by means of traditional UV-lamps
- 3 UV-disinfection by means of UVC-LED

Point of use disinfection of water is not only important for developing and transitional countries

Examples: challenges and applications of "Point of Use" disinfection of water

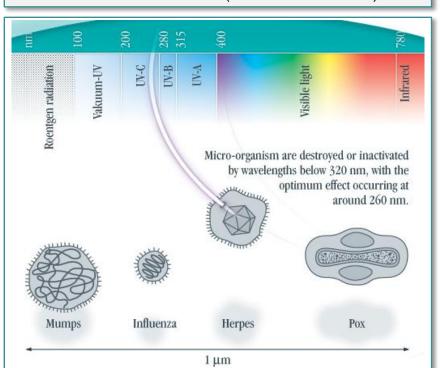
Developing and transitional countries

- A central water supply doesn't exist in many countries and regions
- The use of water sources near the surface of earth is growing (more germs infected then groundwater)
- Sufficient trustfulness into public water supply is absent in many countries
- ...
- Essential is the quality of water at the sampling point

Developed countries

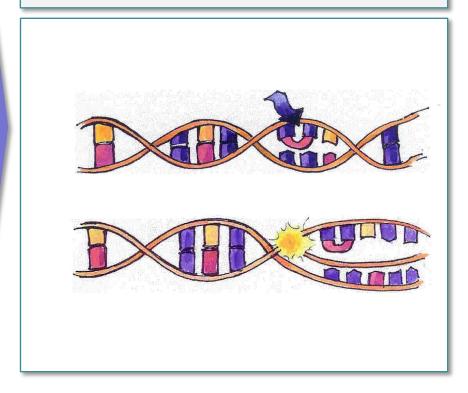
- Mobil applications e.g. ships, caravans and events of rescue and catastrophe
- Within warm water installations for prevention against legionella
- Well systems
- Hygenical high sensitive sampling points e.g. health sector and food industry
- Essential is the quality of water at the sampling point

What is necessary:


- appropriate methodology
- II. technical solution

UV-C radiation is an effective method to disinfect water without toxic impact - Microorganism are destroyed or inactivated by wavelength below 280 nm (UVC)

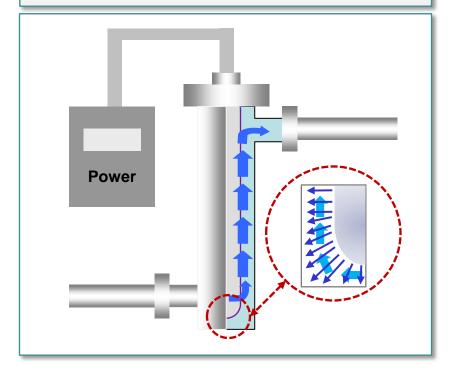
I. Operating principle of UV-C radiation


Characterization of UV-C radiation

- Part of electro-magnetic radiation bounded by: the lower wavelength extreme of the visible spectrum and the upper end of the X-ray radiation band
- Spectral range: 100 400 nm (invisible to human eyes)
 - → UVC: ~180nm 280nm (short wave radiation)

Operating principle of UV-C radiation

- UVC works using a photolytic effect whereby the radiation destroys or inactivates the microorganism
- → it can no longer multiply


State of the art is the usage of low pressure mercury UV-lamps as the radiation source within a reactor (mostly stainless steel)

II. Components and Installation principle of UV-plants

Main Components of UV-plant UV-lamp reactor

Installation principle

- The distance between the UV lamp and the reactor has to be calculated taking account of the transmission of water
- Flow of water should be from the bottom up to the exit of the reactor

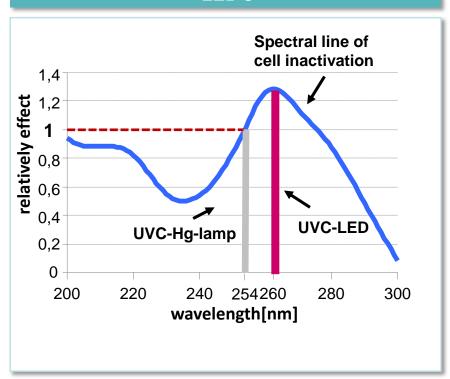
Point of use disinfection of water today is realized by using small UV plants – natural boundaries given by the minimal length of the UV-lamp

II. Example: Point of use applications today

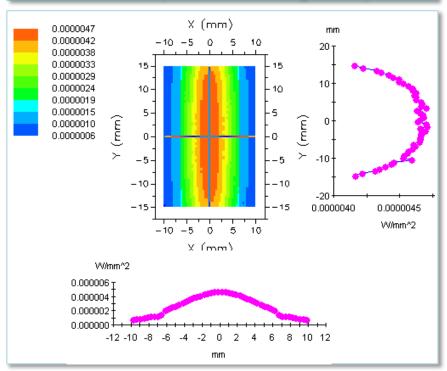
Developing countries: Tropics Box

Developed countries

- Realisation of a compact system to ensure uvdisinfection of surface water
- The system should be adequate according to tropical conditions and suitable for been run independent from power supply systems
- Suitable to for operation via solar power


- Possibility for decentralized disinfection of water for Caravans, expedition vehicles etc.
- System should be space-saving and shatter proofed

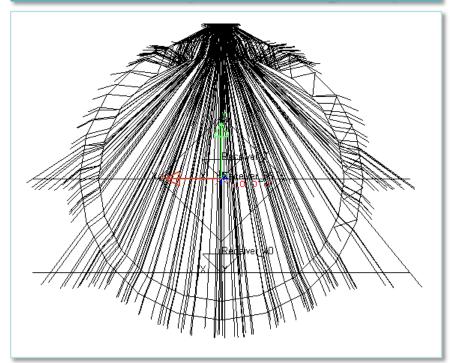
- 1 PURION your partner within UV-technology
- 2 UV-disinfection by means of traditional UV-lamps
- 3 UV-disinfection by means of UVC-LED


UVC-radiation for disinfection of water can be emitted by LED – technical solutions to be developed

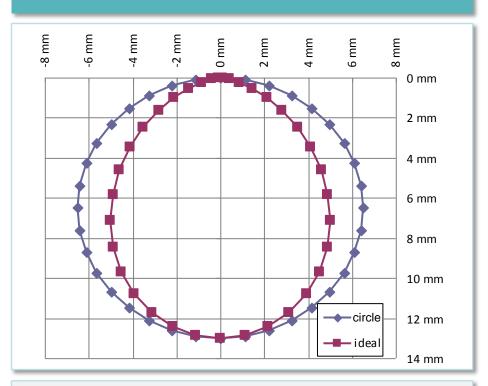
I. Basics: disinfection by means of UVC LED's

Disinfection effect of the UV radiation from LED's

Structure of the intensity of UV radiation from LED's (surface emitting diode)


- The adapted wavelength of LED allows an increase of efficiency by approx.y 20% to HG lamp
- Radiation intensity of a UV-LED is distributed elliptical
- Full intensity immediately after switch on

The development of geometries for disinfection plants has to base on the diffusion pattern


I. Design of pipe geometries

Simulation of the Structure of the UV radiation from LED's (surface-emitting diode)

 The diffusion of radiation starting from the surface of the chip has been simulated

Development of pipe geometries

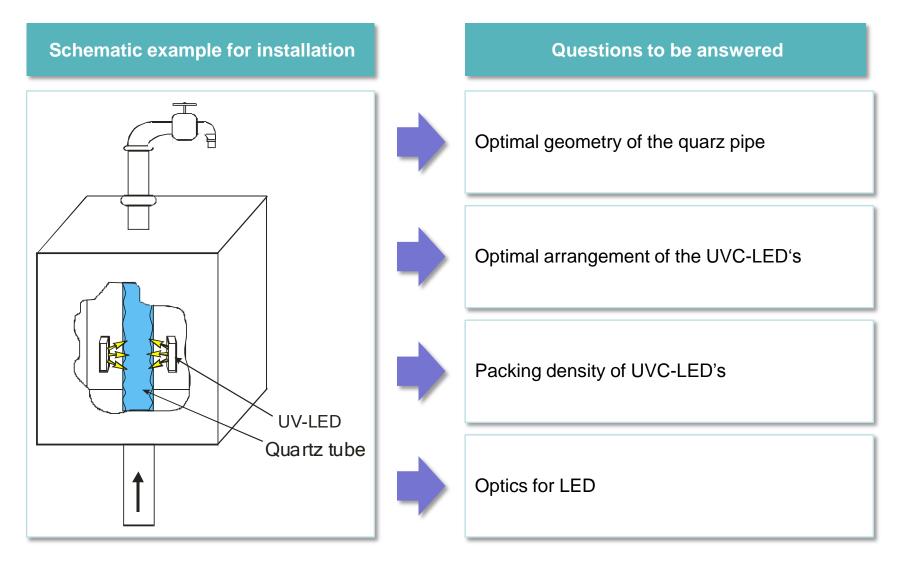
- The circle is not the optimal geometry for a homogenoues radiation
- → How to get elliptical geometries?

PURION already did first research regarding possible geometries of a reactor for usage of LED

II. Examples for reactor geometries

First test results

Aim:


Development of reactor design under consideration of UV-LED radiation pattern, adjustment of water flow and circulation

Approach:

Deformation of the quartz pipe to generate turbulences in the area of radiation

Due to the small size of UVC-LED's installation can be carried out very flexible and close to the sampling point

II. Example

Further R&D regarding UVC-LED has to be carried out - the potential advantages of this technology are extensive

Summary of potential advantages of UVC-LED

- Energy efficiency due to
 - Possibility to adjust the wavelengths of the UV-light according to the maximum of the DNA - absorbent band
 - Immediate readiness for operation after switch on
- Small power and voltage peaks during switch on
- Safe operation due to safety extra-low voltage
- Possibility to adjust the radiation characteristics
- Narrowband emission without disturbing side peaks (unwanted generation of OZON)
- Ecologically friendly due to absence of mercury
- No thermal radiation
- New geometries also for very small flow rates
- Robust and shatter proofed

UVC-LEDs are a great opportunity to improve the existing UVC water disinfection technology

It will become possible to realize the disinfection of water directly at the sampling point.

Your contact

Walter Wipprich

Managing Director

E-Mail walter.wipprich@purion.de Phone +49.3682.479087 Fax +49.3682.479086

Schubertstreet 18 98544 Zella-Mehlis www.purion.de